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ABSTRACT

This research presents a comprehensive investigation of multimodal biometric authentication systems utilizing
feature-level fusion of traditional and deep learning-based feature extraction methods. The proposed
approach integrates Histogram of Oriented Gradients (HOG) with pre-trained deep neural networks—
specifically VGG16 for fingerprint recognition and FaceNet for facial recognition—to create robust combined
feature vectors. Principal Component Analysis (PCA) is employed to address high-dimensionality challenges
while preserving 95% of variance. A Fully Connected Neural Network (FCNN) classifier processes the
dimensionality-reduced features, achieving 98.3% accuracy on fingerprints and 97.6% on faces.
Comprehensive comparative analysis with Support Vector Machines (SVM), Random Forests, and
Convolutional Neural Networks (CNN) demonstrates FCNN's superior performance in feature-level fusion
tasks. The integrated system incorporates Two-Factor Authentication (2FA) with One-Time Password (OTP)
verification, establishing a robust multi-layered security framework suitable for enterprise-level access
control systems. This research demonstrates the effectiveness of combining handcrafted and deep learning
features for achieving state-of-the-art accuracy in multimodal biometric authentication.
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INTRODUCTION

Multimodal  biometric  systems combine
multiple biometric modalities to enhance
system reliability, addressing the limitations
(spoofing, environmental sensitivity) of single-
modality systems. Feature-level fusion is a
promising approach but is challenged by the
high dimensionality of the resulting feature
space.

The primary research challenge was: How to
effectively combine handcrafted features
(HOG) with deep learning representations
(VGG16/FaceNet) while managing
computational complexity through
dimensionality reduction (PCA) to achieve
optimal accuracy.

The research made several key contributions:

o Novel Fusion Architecture: Integration
of multiple feature  extraction
techniques (HOG and deep learning) at
the feature level.

e Dimensionality Management:
Systematic application of PCA to
reduce computational burden while

maintaining $95\%% variance
preservation.
Comprehensive Performance Analysis:

Rigorous comparison of four different
classifiers (FCNN, SVM, Random

e Enterprise  Security = Framework:
Complete end-to-end system with
Two-Factor Authentication (2FA) for
practical deployment viability.

SYSTEM ARCHITECTURE

The proposed system is a feature-level fusion
pipeline:

e Biometric Capture:
fingerprint and facial images.

Acquires

o Feature Extraction Pipeline: Hybrid
features are concatenated:

e Dimensionality  Reduction: PCA
transforms high-dimensional features
to a fixed, lower dimension.

o Classification: FCNN processes the
reduced-dimensional feature vectors.

e Security Layer: 2FA implementation
with OTP verification.
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o VGG16 (Fingerprints): Pre-trained
on ImageNet, used for transfer
learning, and features were extracted
from Dblock5_pool, vyielding 512

e HOG: Handcrafted descriptor
capturing local gradient orientation
distributions24. Used to capture

. . features.
structural  patterns  like  ridge
orientations in fingerprints and facial o FaceNet (Faces): Based on Inception
contours. ResNetV1, generating 128-

dimensional embeddings robust to

o Configuration included $8\times8$ variations in pose and lighting.

cell size, $2\times2$ block size, and

9 orientation bins. e Feature-Level Fusion: Combined
e Deep Learnin feature vectors
P g $f {combined}=[f {HOG}:f {deep}]
$ were created via concatenation.
Feature Type Original Dim. Extraction Time (ms)
Combined (FP): HOG + VGG16 620 65-95 30
Combined (Face): HOG + FaceNet 236 75-115 %

o Fingerprint: 620D $\rightarrow$

o ; .
PCA was applied to the combined features to 95D (35.2% variance retained).\

reduce computational bottlenecks and prevent o Face: 236D $\rightarrow$ 95D
overfitting. (95.1% variance retained).
e Goal: Retain components explaining e This achieved an 84.7% dimensionality
$\ge 95\%$ of variance. reduction for fingerprints.

e Result: PCA selected $k=95$

components for both modalities. The FCNN architecture was designed for

binary classification on the 95-dimensional
input.

Rising Model Accuracy During Training (Epochs 1-10)

o

Figl.
Layer Units Activation Dropout
Input 95
Hidden 1 512 ReLU 0.5
Hidden 2 256 ReLU 0.5
Hidden 3 128 ReLU 0.5
Output 2 Sigmoid
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Optimization: Adam optimizer39.

Regularization: Dropout (50% rate)
and L2 Regularization

($\lambda=0.001$) were used to

prevent overfitting.

Training: Trained for 20 epochs with a

RESULTS AND ANALYSIS

Initial Training Phase (10 Epochs)

batch size of 32.

Method Training Accuracy (%) | Testing Accuracy (%) F1-Score
HOG Features Only 98.2 86.3 0.841
VGG16 Features Only 96.5 93.2 0.928
HOG + VGG16 (Concatenated) 99.8 96.7 0.965
HOG + VGG16 + PCA 98.5 98.4 0.984
HOG + VGG16 + PCA +
Ensemble 99.1 99.2 0.992
HOG + VGG16 + PCA +
Ensemble + RL 99.3 99.6 0.996
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Figure2. Training and Validation Accuracy Progression Over Initial 10 Epochs

Key Observations:

Epoch 1: Training accuracy initiates at
75%, validation at 70%, indicating
model's exploratory phase

Epoch 5: Training jumps to 97%,
validation to 90%, demonstrating
effective feature learning

Extended Training Phase (20 Epochs)
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Epoch 10: Training converges to 99%,
validation stabilizes at 93%

Gap Analysis: Minimal divergence
between training and validation
indicates robust generalization without
significant overfitting

Model Accuracy Rising with Overfitting Period (20 Epochs)

Figure3. Extended Training Analysis: 20-Epoch Progression with Overfitting Phase
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Three Distinct Phases
Phase 1 (Epochs 1-10): Steady Learning

e Both training and validation accuracies
increase monotonically

o From 72% to 93% (training) and 72%
to 93% (validation)

e Perfect synchronization
healthy learning dynamics

Phase 2 (Epochs 11-14): Overfitting Detection

indicates

e Training accuracy continues: 93.5% —

o Divergence magnitude: ~10.9% at
epoch 14

e Interpretation: Model memorizing
training patterns rather than learning
generalizable features

Phase 3 (Epochs 15-20): Recovery and
Convergence

e Validation accuracy recovers: 84.5%
— 97.8%

e Training accuracy: 95.5% — 98.0%
e Gap reduced to 0.2% by epoch 20

94.9%
e Validation accuracy stagnates: 82.7% * Indlcatgs . beneficial eff_ects of
. 84.0% regularization and learning rate
scheduling
Training Statistics
Table4. Training Convergence Analysis Summary
Metric Value Phase Interpretation
Peak Training Accuracy 98.0% Epoch 20 Optimal model convergence
Peak Validation Accuracy 97.8% Epoch 20 Excellent generalization
Min Train-Val Gap 0.2% Epoch 20 Nearly perfect generalization
Max Train-Val Gap 10.9% Epoch 14 Maximum overfitting
Overfitting Recovery Rate +13.8% Epoch 17 Rapid validation recovery

Classifier Performance Comparison

Blometric Model Accuracy Comparison

Figure4. Comparative Accuracy Performance of Classification Models

Detailed Model Performance

Table5. Model Accuracy Comparison for Biometric Recognition

Classifier Fingerprint Acc. (%) Face Acc. (%) Avg. Acc. (%)
FCNN 98.3 97.6 97.95
CNN 96.2 95.4 95.80
SVM 95.2 93.4 94.30
Random Forest 94.3 91.6 92.95
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Performance Analysis

Improvement, .\« v« cNN

~97.95-95.80

95.80
=2.25%

x 100

Improvement,, -\« .« sym

~97.95-94.30

94.30
=3.87%

x 100

Improvement, -\« < rr

~97.95—92.95

92.95
= 5.38%

FCNN Superior Performance Factors

x 100

e Non-linear Mapping  Capability:
FCNN's multiple hidden layers enable
complex non-linear transformations
necessary for fused feature spaces

e Adaptive Learning: Dropout and L2
regularization  effectively  prevent
overfitting while maintaining
discriminative power

e Dimensionality Handling: FCNN's
architecture specifically designed for
95-dimensional reduced features after
PCA

e Feature Integration: Better exploitation
of complementary information from
HOG and deep learning features

SVM Performance Analysis

e Achieves competitive 94.30% average
accuracy

e Limited by kernel methods' rigidity in
capturing complex relationships

e Better suited for lower-dimensional
spaces

Random Forest Analysis
o Lowest performance (92.95% average)

o Decision tree ensemble struggles with
high-dimensional feature interactions

o Effective for feature importance but
suboptimal for multimodal fusion

CNN Analysis
e Moderate  performance  (95.80%
average)

e Originally designed for raw image
processing

e Pre-extracted and fused features reduce
CNN's advantage

e One-dimensional convolutions
insufficient for complex feature
patterns

Feature-Level Fusion Heatmap Analysis
Heatmap Interpretation

The visualization employs color intensity to
represent accuracy levels:

o Dark Red: High accuracy (>97%)

¢ Medium Red: Moderate-high accuracy
(95-97%)

e Light Red: Moderate accuracy (93-
95%)

o Blue: Lower accuracy (<93%)

Model Accuracy Heatmap for Feature-Lavel Fusion

“ I

Figure5. Model Accuracy Heatmap: Feature-Level Fusion Performance Matrix
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FINDINGS

O

O

FCNN  Dominance:  Consistently
highest across both modalities
Fingerprint HOG-VGG16: 98.0%

Face HOG-FaceNet: 97.0%

Modality ~Asymmetry: Fingerprint
features yield slightly higher accuracy
(0.3-1.3% advantage over faces across

all models)

O

O

Reason: Fingerprint patterns more
distinctive and less variable than
facial features

Environmental factors (lighting,
pose) less impact fingerprints

Model Ranking Consistency: FCNN >
CNN > SVM > Random Forest
maintained across both modalities

Comprehensive Performance Metrics for All Models and Modalities

Model Precision Recall F1-Score Accuracy
FCNN (Fingerprint) 0.983 0.977 0.980 98.3%
FCNN (Face) 0.976 0.971 0.973 97.6%
SVM (Fingerprint) 0.952 0.947 0.949 95.2%
SVM (Face) 0.934 0.928 0.931 93.4%
CNN (Fingerprint) 0.962 0.957 0.959 96.2%
CNN (Face) 0.954 0.948 0.951 95.4%
RF (Fingerprint) 0.943 0.937 0.940 94.3%
RF (Face) 0.916 0.909 0.912 91.6%
PCA Effectiveness Analysis

PCA Dimensionality Reduction Summary
Modality Original Dim. Reduced Dim. Variance Retained
Fingerprint 620 95 95.2%
Face 236 95 95.1%

. Fingerprint image captured
e Memory Reduction: 620D — 95D = and preprocessed
84.7% reduction (fingerprints) e Face encoding: €face =
e Matrix Operations: Computational "FaceNet”(Ifqce)
i 2 . .
complexity reduced from 0O(6202) to e  Fingerprint features: fr, =

0(95?) for covariance calculations

Training Time: ~65% acceleration in
classifier training

Accuracy Trade-off: Minimal 0.3-
0.5% loss while gaining significant
computational advantages

User Registration Flow

27

User provides username and
password

Facial
preprocessed

image captured and

"PCA"([*HOG"(Ir,) ®
"VGG16”(Irp)])

Templates stored securely in system
database

Authentication Flow

Live facial and fingerprint
images captured
Features extracted using identical
pipeline: €live =

UPCAH([MHOG"(I”ve) @
"VGG16" (Iive)])

FCNN classifier
probability:
"FCNN"([eface: frp])

computes match
P =
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o If P>0.95, proceed to OTP verification

e System generates OTP and sends via
SMS/Email

e User enters OTP within 5-minute
validity window

e Upon successful verification: Access
Granted

CONCLUSION

This research presents a comprehensive
multimodal biometric authentication system
achieving 97.95% average accuracy through
intelligent integration of multiple techniques:

o Feature-Level Fusion: Combining
HOG with VGG16 (fingerprints) and
FaceNet (faces) creates complementary
representations capturing both
structural and semantic information

o Dimensionality Management: PCA-
based reduction achieves 84.7%
dimensionality ~ reduction  while
preserving 95%-+ variance, enabling
practical deployment

e Optimal Classification: FCNN
classifier with dropout (0.5) and L2
regularization outperforms alternatives
by 2.25-5.38%, demonstrating
architecture-data alignment

e Robust Training Dynamics: 20-epoch
analysis reveals effective overfitting
management,  with  final train-
validation gap reduced to 0.2%

e Enterprise Security: 2FA integration
with OTP verification provides multi-
layered protection suitable for high-
security applications

The proposed system establishes a benchmark
for multimodal biometric authentication,
balancing accuracy, computational efficiency,
and security. Practical implementation on edge
devices becomes feasible through
dimensionality optimization, while 255-460 ms
latency satisfies real-time system requirements.

e Systematic  evaluation of  four
classifiers on fused biometric features

e Demonstration of PCA's critical role in
computational optimization

o Evidence supporting feature-level
fusion superiority

e Complete production-ready
implementation with security
framework

e Comprehensive performance analysis
including overfitting detection and
recovery

Future research should explore adversarial
robustness, federated learning for privacy
preservation, and integration of additional
biometric modalities for enhanced security and
system resilience.
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